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Definition 1. A measurement scenario is a triple = (X, M, O) where:
e X is a finite set of observables;

e M C'P(X) is a set of contexts, where each context C' € M represents a maximally com-
patible observables (or measurements that can be performed together);

e (O is a finite set of outcomes.

Definition 2. A measurement cover M of a set X is a set of contexts s.t.:

o (cover) Jpe O =X,
e (anti-chain) if C,C"e M and C C C' then C'=C",

Example. (Bell scenario)

= {a1,a2,b1,b2}
{{a1,01},{a1, b2}, {az, b1}, {az, ba}}
— {071}
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Definition 3. An event (assignment, section) over U C X given a set of observables X and a
set of outcomes O is a function s:U — O.

Definition 4. An event sheaf given a set of observable X and a set of outcomes O is a functor
E:P(X)°P — Set where:

e VUCX,EWU):=]]..,,0;

xeclU

o YU,U'CX and U CU’, a restriction map resy, : E(U') — E(U) of events is defined by
functional restriction resY (s) = s|p.

Remark. Set denotes the category of sets of events (maps like s: U — O) and restricted maps.

P(X) denotes power set category of X whose objects are subsets of X and morphisms are
inclusion maps (i.e. for U C U, i:U — U").

P (X )°P denotes the opposite category whose morphisms are projection maps instead of inclusion
maps (i.e. for U CU’, m:U"— U).

/

A projection map 7m: U"— U is mapped to a restriction map resg; : E(U’) — E(U) by the event
sheaf functor £.
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Example. (Bell scenario)

P(X) X = {a17a’27bl762}7 Ul = {al,(lg,bl}, U2 = {(1;1,@2,(72}, Tty
Ul:{alabl}a ) U:{al}7
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Suppose N logical propositions 1, ..., ©x. Each ¢, can be assigned a probability p;.

Boolean variables appear in ; correspond to empirically testable quantities (observables). Each
©w; expresses a condition on the outcomes of an experiment involving these quantities. The
probability p; are obtained from the statistics of experiments.

Let ®:= A.¢; and P=Prob(®):

1— P = Prob(—®)

= Prob<\/ —|g0i>

)

> pi < N-1+4P

If ¢, are carefully selected so that ¢ is unsatisfiable (i.e. P =0), we have:

ZPz‘éN—l
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Example. (Bell test)

(4,B)(0,0) (1,0) (0,1) (1,1)
(a,b)| 1/2 0 0 1/2
(a1,b2)| 3/8 1/8 1/8 3/8
(az,b1)
(a2, b2)

3/8 1/8 1/8 3/8
1/8 3/8 3/8 1/8

Table 1. Bell test, Alice and Bob

Pick 4 conditions s.t. ®:= /\ . ¢; is unsatisfiable:

1 = (a1 Ab1)V (—a; A—by) ay < by
w2 = (a1 Ab2)V (—ag A—bs) = aq <« b
w3 = (aaAb)V(ma2A—-b1) = az<b
ws = (magAb2)V (azaA—b2) = as® bs

We have p;=1and p;=6/8 for i =2,3,4. 5. p;=3.25 while N — 1= 3. Violation!
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0,0) (0,1) (1,0) (1,1)
(CLl, bl) 1 0 0 1
(al, bg) 1 0 0 1
(CLQ, bl) 1 0 0 1
(ag, bg) 0 1 1 0

Table 2. PR-box support

Figure 1. PR-box as bundles

Bt) ,fiber at t section p

' 4
W A global assignment s,: X — O corresponds to
otal space

a closed path traversing all the fibers exactly
once. Such a path is called univocal since it
g X assigns a unique value to each variable.

base space

t

(from Andrej Bauer on HoTT)



Hierarchy of Strength of Contextuality
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Figure 2. Bell test Figure 3. Hardy Paradox Figure 4. PR-box

Probability (Bell) < Possibility (Hardy) < Strong (PR, GHZ, KS)

e Probability: simple violation of (logical) Bell inequality.
e Possibility: at least one local section s cannot be reduced to projection of some s,.

e Strong: there is no (consistent) global section s, at all.
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How does state-independent contextuality argument like Kochen-Specker Theorem fit into “stan-
dard model” of quantum computing (Qubit, Bloch Sphere, Pauli XYZ basis, circuits)?

3. ALL-VERSUS-NOTHING ARGUMENTS AND PARTIAL GROUPS

When we look into a quantum system, we see that the measurement depends on both
the quantum state and the observable. However, it has been observed that some sets of
observables inhere the contextuality independently from the quantum state. This type of
contextuality, earlier observed by Kochen and Specker [8], has been developed to define
different types of contextuality [10, 21, 23, 24]. Here, we formulate them with a sheaf-
theoretic structure, starting from what is formally studied as an all-versus-nothing (AvN)
argument [14, 15, 18]. We extend this argument to state-independent AvN and claim that

Kochen-Specker type contextuality is, in fact, state-independent AvN in a partial closure.

e a strange question: what is the difference between quantum state and observables?

e in “standard model” the notion of observables is hidden (in background of the whole story,
Pauli XYZ), only quantum states are staged onto the “interface level".
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“Base space” graphs of observables:

T /\

a; +——1
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Observables can “inhere” contextuality independent of any quantum states.
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More From Algebraic Geometry

Contextuality, Cohomology and Paradox
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—— Abstract

Contextuality is a key feature of quantum mechanics that provides an important non-classical
resource for quantum information and computation. Abramsky and Brandenburger used sheaf
theory to give a general treatment of contextuality in quantum theory [New Journal of Physics
13 (2011) 113036]. However, contextual phenomena are found in other fields as well, for example
database theory. In this paper, we shall develop this unified view of contextuality. We provide
two main contributions: first, we expose a remarkable connection between contexuality and
logical paradoxes; secondly, we show that an important class of contextuality arguments has a
topological origin. More specifically, we show that “All-vs-Nothing” proofs of contextuality are
witnessed by cohomological obstructions.
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The logic of contextuality

Samson Abramsky
Department of Computer Science, University of Oxford, United Kingdom
samson.abramsky@cs.ox.ac.uk

Rui Soares Barbosa'!
INL - International Iberian Nanotechnology Laboratory, Portugal
rui.soaresbarbosa@inl.int

—— Abstract

Contextuality is a key signature of quantum non-classicality, which has been shown to play a central
role in enabling quantum advantage for a wide range of information-processing and computational
tasks. We study the logic of contextuality from a structural point of view, in the setting of partial
Boolean algebras introduced by Kochen and Specker in their seminal work. These contrast with
traditional quantum logic a la Birkhoff and von Neumann in that operations such as conjunction
and disjunction are partial, only being defined in the domain where they are physically meaningful.
We study how this setting relates to current work on contextuality such as the sheaf-theoretic and
graph-theoretic approaches. We introduce a general free construction extending the commeasurability
relation on a partial Boolean algebra, i.e. the domain of definition of the binary logical operations.
This construction has a surprisingly broad range of uses. We apply it in the study of a number of
issues, including:
= establishing the connection between the abstract measurement scenarios studied in the contextu-
ality literature and the setting of partial Boolean algebras;

= formulating various contextuality properties in this setting, including probabilistic contextuality
as well as the strong, state-independent notion of contextuality given by Kochen-Specker
paradoxes, which are logically contradictory statements validated by partial Boolean algebras,
specifically those arising from quantum mechanics;

= investigating a Logical Exclusivity Principle, and its relation to the Probabilistic Exclusivity
Principle widely studied in recent work on contextuality as a step towards closing in on the set
of quantum-realisable correlations;

= developing some work towards a logical presentation of the Hilbert space tensor product, using
logical exclusivity to capture some of its salient quantum features.
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Abstract

Partial Boolean algebra underlies the quantum logic as an important tool for
quantum contextuality. We propose the notion atom graphs to reveal the graph
structure of partial Boolean algebra for quantum systems by proving that (i)
the partial Boolean algebras for quantum systems are determined by their atom
graphs; (ii) the states on atom graphs can be extended uniquely to the partial
Boolean algebras, and (iii) each exclusivity graph is an induced graph of an atom
graph. (i) and (ii) show that the quantum systems are uniquely determined by
their atom graphs. which proves the reasonability of graphs as the models of quan-
tum experiments. (iii) establishes a connection between partial Boolean algebra
and exclusivity graphs, and introduces a method to express the exclusivity exper-
iments more precisely. We also present a general and parametric description for
Kochen-Specker theorem based on graphs, which gives a type of non-contextuality
inequality for KS contextuality.

Keywords: Quantum contextuality, Partial Boolean algebra, Atom graphs,
Kochen-Specker theorem
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6.3 Contextual semantics

Why do such similar structures arise in such apparently different settings? The
phenomenon of contextuality is pervasive. Once we start looking for it, we can
find it everywhere! Examples already considered include: physics [3], computa-
tion [5], and natural language [8].

This leads to what we may call the Contextual semantics hypothesis: we
can find common mathematical structure in all these diverse manifestations, and
develop a widely applicable theory.



