
l-Circuit : A Graphical Language for Func-
tional Programming

Chenchao Ding, Oct 26, 2023

Powered by GNU TEXMACS

Outline 2/28

� Introduction

� Lambda Calculus & Higher Order Functions

� Free Variables & Scoping

� Recursion as Dynamically Unfolding Circuits

� Circuit Simplification as Supercompilation

� Episode : Type Inference

� Proofs as Programs

Introduction 3/28

There is a long history about diagrams. . .

Begriffsschrift (Frege, 1879) Graphical (Keenan, 1996)

Haskellian (1998 - modern+) SICP (1984)

Introduction 4/28

A program is seen as a machine. To make sense of it, one must observe its
operation.

�� Valentin Turchin, The Concept of a Supercompiler , 1986

Valentin Fyodorovich Turchin (1931-2010) was a Soviet and
American physicist, cybernetician, and computer scientist. He
developed the Refal programming language, the theory of meta-
system transitions and the notion of supercompilation.

This work is mainly inspired by Yin Wang's scattered teaching, and based
upon Programming Languages as Notations [?] by Chelsea Sierra Voss
(csvoss).

Lambda Calculus | Syntax 5/28

Idealized Circuits Lambda Calculus

, x; y; z; : : :

wires / super-conductors variables

, �x:e; �xy:e; : : :

circuit templates abstractions

, re; r (e1
 e2); : : :

wire connections applications

Lambda Calculus | Examples 6/28

Idealized Circuits Lambda Calculus

�x:x

�xy:y

(�x:x)(�x:x)

�fx:fx

�fx:f(f(fx))

Higher-Order Functions 7/28

� electrons moving through wires) quite intuitive . . .

� circuits moving through �wires�) nonsensical

Wires are abstract trajectories in some spaces.

� circuits moving through �wires�) to move a circuit from A place to B place

� there might be many different ways from A to B

� ideally we ignore the difference (lengths, twists, etc.) and focus only on two �endpoints�

Boxes sliding along wires doesn't change circuits.

Higher Order Functions | compose 8/28

*2

5

compose=�fg:�x:f � (g �x)

Higher Order Functions | compose 9/28

Here is a diagram made from Yin Wang:

compose = \f g -> (\x -> f (g x))

� theoretically the above diagram should be the compose circuit

� for convenience, we can align two output arrows into one so that it �pokes around�

High Order Functions | Binders & DeBruijn Indices 10/28

� Boxes are �scope delimiters�

� Pins (wires crossing boxes) are perfect binders

There is no explicit and literal �l� in �-circuit - but wires and boxes
preserves the �binding structures� and scopes.

) same functions as deBruijn indices / numbers

High Order Functions | Binders & DeBruijn Indices 11/28

====================
�

a-equivalence : the name/tag of a wire always remains consistent. (silent)

Free Variables & Scoping 12/28

What about functions with free variables?

let x = 4 in
let f = \y -> x + y in

let x = 2 in
f 3

Free Variables & Scoping 13/28

What about functions with free variables?

let x = 4 in
let f = \y -> x + y in

let x = 2 in
f 3

Free variables are covert channels

Analogy - WiFi (wireless connections):

� connect to the unique WiFi named �home� once initiated) unconvenient but safe

� connect to a closest WiFi named �home� wherever you go) convenient but dangerous

Free Variables & Scoping 14/28

let x = 4 in
let f = \y -> x + y in

let x = 2 in
f 3

))))))))))))))))))))))))))))))))))))))))static

Free Variables & Scoping 15/28

let x = 4 in
let f = \y -> x + y in

let x = 2 in
f 3

))))dynamic

Recursion as Dynamic Circuits | DEMUX 16/28

Conditionals are demultiplexers (DEMUX)

This can be encoded in a type isomorphism (distribution law):

2� (A+B) ' (2�A)+ (2�B)

Recursion as Dynamic Circuits | MUX 17/28

Joins are multiplexers (MUX)

Joins are implicit in our daily programming experience. They are explicit in static analysis and
kind of explicit in logic programming. Consider the program below:

fact n = case n of
0 -> 1
n -> n * fact (n-1)

There are two possible outputs (one for each branch), but the number of output signal is 1.

(2�C)+ (2�D) ' 2� (C +D)

Recursion as Dynamic Circuits | sum 18/28

sum n = case n of
0 -> 0
n -> n + sum (sub1 n)

sum 0 = 0
sum n = n + sum (sub1 n)

Recursion as Dynamic Circuits | sum 19/28

Calling (sum 3) will dynamically unfold
(building) circuits through the rec endpoint.
It looks like a stack. All values are stored and
transmitted through wires.

(
=

Re-arrange the dynamically unfolded

circuits . . .

Recursion | Append 20/28

append xs ys = case xs of
[] -> ys
a:d -> a:(append d ys)

append xs ys = case xs of
[] -> ys
a:d -> let o^ = append d ys in

a:o^

Recursion | Appendo 21/28

appendo [] ys o = [(== o ys)]
appendo xs ys o = [(== xs a:d)

(== o a:o^)
(appendo d ys o^)]

Logic programming languages can be better �circuit discription languages�!

Circuit Simplification 22/28

!!!!!!!!!!�

&

�x: [(�x:x)((�x:2�x)x)]

¡' �
¡�

!!!!!!!!!!�

&

�x:2�x

�; & - converting between circuits and lambdas

' - circuit simplification

� - supercompilation / partial evaluation

Circuit Simplification | Inlining 23/28

)
def f(x):

y = 2 * x
return g(y)

)

def f(x):
y = 2 * x
z = 1 + y
return h(z)

)

def f(x):
y = 2 * x
z = 1 + y
return z / 3

Questions : Are they still �functional� programs? In what sense?

Circuit Simplification | Summary 24/28

Few observations here:

� variables and function arguments are the same thing in essence

� they are both �points�/ �anchors� of data flow (can always be exposed)

� in �-circuits they are both wires / conductors

� functional programs =/ point-free programs

For circuit simplification � partial evaluation:

� remove boxes (scope delimiters)) b-reduction

� adding boxes) h-expansion, Kleene's Sm
n theorem

� swallowing boxes) inlining

� splitting boxes

� annihilation of constructors and eliminators / MUX and DEMUX

� collapsing of DEMUX

� . . .

Type Inference 25/28

see old slides . . .

Proofs as Programs | Natural Deduction Without ¡ 26/28

Toward Type Classes . . . 27/28

TODO:

� to explore type classes like Applicative, Traversable, and Monad through �-circuits

� focus on Monad and Arrow

� for Monad, focus on continuation monad and its implications

Discussion 28/28

� can we imagine wires / conductors with some kind of resistance?

� how to extend �-circuits to first-order types and more (see lambda cube)?

	This work is mainly inspired by Yin Wang's scattered teaching, and based upon Programming Languages as Notations [] by Chelsea Sierra Voss \(csvoss\).
	Wires are abstract trajectories in some spaces.
	Boxes sliding along wires doesn't change circuits.
	There is no explicit and literal “λ” in λ-circuit - but wires and boxes preserves the “binding structures” and scopes.

