A-Circuit : A Graphical Language for Func-
tional Programming

Chenchao Ding, Oct 26, 2023

Powered by GNU TEXyacs

Outline s

e Introduction

e Lambda Calculus & Higher Order Functions
e Free Variables & Scoping

e Recursion as Dynamically Unfolding Circuits
e Circuit Simplification as Supercompilation

e Episode : Type Inference

e Proofs as Programs

Introduction 3/28

There is a long history about diagrams. ..

3 F(a) 8§ F(a)
| Ef(b,a) =|(
F(b) a f(3,)

»a.(3babb))irbabhb))

Begriffsschrift (Frege, 1879) Graphical (Keenan, 1996)
f &t g > ai(}];(z,y) - y+z) 6 d rb 720
x ;- i
g &+ —>
J @—> factorial

Haskellian (1998 - modern+) SICP (1984)

Introduction 4/28

A program is seen as a machine. To make sense of it, one must observe its
operation.

— Valentin Turchin, The Concept of a Supercompiler, 1986

Valentin Fyodorovich Turchin (1931-2010) was a Soviet and
American physicist, cybernetician, and computer scientist. He
developed the Refal programming language, the theory of meta-
system transitions and the notion of supercompilation,

This work is mainly inspired by Yin Wang’s scattered teaching, and based
upon Programming Languages as Notations [?] by Chelsea Sierra Voss
(csvoss).

Lambda Calculus | Syntax 5/28

Idealized Circuits Lambda Calculus
4
& T, Y, 2.
4
wires / super-conductors variables
< 4 & Ax.e, A\xy.e,...
circuit templates abstractions

— J77
J & re,r(e1®e2),. ..
4«.—.

wire connections applications

Lambda Calculus | Examples

Idealized Circuits Lambda Calculus

< < \T.T

bt

< 4 ATY. Y

< * (Az.x)(A\z.x)
f<
< ® X<)\fZL’ f{L’
f:
< ® ® ® X< Afxf(f(fx))

Higher-Order Functions 7/28

e electrons moving through wires = quite intuitive. ..

e circuits moving through “wires” = nonsensical

Wires are abstract trajectories in some spaces.

e circuits moving through “wires” = to move a circuit from A place to B place
e there might be many different ways from A to B

e ideally we ignore the difference (lengths, twists, etc.) and focus only on two “endpoints”

Boxes sliding along wires doesn’t change circuits.

Higher Order Functions | compose 8/28

compose =\ fg.Ax.fe(gex)

T E

Higher Order Functions | compose 0/28

Here is a diagram made from Yin Wang:

compose = \f g -> (\x -> f (g x))

e theoretically the above diagram should be the compose circuit

e for convenience, we can align two output arrows into one so that it “pokes around”

High Order Functions | Binders & DeBruijn Indices 10/28

e Boxes are “scope delimiters”

e Pins (wires crossing boxes) are perfect binders

r 3

compose = (A (A (A (3 (2 1)))))

There is no explicit and literal “N”’ in A-circuit - but wires and boxes
preserves the “binding structures” and scopes.

= same functions as deBruijn indices / numbers

High Order Functions | Binders & DeBruijn Indices 11/28

compose = (A (f g) (A (x) (f (g x)))) compose = (A (h 9) (A (x) (h (g x))))

a-equivalence : the name/tag of a wire always remains consistent. (silent)

Free Variables & Scoping 12/28

What about functions with free variables?

let x = 4 in
let £ = \y -> x +y in
let x = 2 in
f 3

Free Variables & Scoping 13/28

What about functions with free variables?

let x = 4 in
let £ = \y -> x +y in
let x = 2 in
f 3

Free variables are covert channels

Analogy - WiFi (wireless connections):
e connect to the unique WiFi named “home” once initiated = unconvenient but safe

e connect to a closest WiFi named “home” wherever you go = convenient but dangerous

Free Variables & Scoping 14/28

let x = 4 in
let £ = \y -> x +y in
let x = 2 in

X e

static

—

® X 3 ® X ' m///zo

Free Variables & Scoping 15/28

let x = 4 in
let £ = \y -> x +y in
let x = 2 in

® X xX®

dynamic

® X 3 .X -‘/‘éﬂ
am

Recursion as Dynamic Circuits | DEMUX

Conditionals are demultiplexers (DEMUX)

oo
oo

This can be encoded in a type isomorphism (distribution law):

2x (A+B) ~ (2xA)+(2x B)
2
a g E R
———
X A
Atd E_ 8 -

Recursion as Dynamic Circuits | MUX

Joins are implicit in our daily programming experience. They are explicit in static analysis and
kind of explicit in logic programming. Consider the program below:

fact n = case n of
0O ->1

Joins are multiplexers (MUX)

n ->n *x fact (n-1)

There are two possible outputs (one for each branch), but the number of output signal is 1.

2xC)+(2xD) ~ 2x(C+ D)

2 pA :
I"” A EA'?C’ C/ x'\\‘

= |9

~ 4

+ /
2 2 L
JX B b 7‘1/

M

b]

&xD

Recursion as Dynamic Circuits | sum

sum n = case n of
0O ->0 D 4

!
+ E sub1

n ->n + sum (subl n)

&

sum O = O
sum n + sum (subl n)

]
I

!
I m sub1

Recursion as Dynamic Circuits | sum

——F subt ——-—q

b] L
f*é'—*+§-+“1‘+ 5 sub1 - sub1 -~ sub1 3

sum 3

Calling (sum 3) will dynamically unfold
(building) circuits through the rec endpoint.
It looks like a stack. All values are stored and
transmitted through wires.

Re-arrange the dynamically unfolded

circuits. ..

Recursion | Append 20/28

.]c7 3]
’; -
X$ _/’/ryT % \\\\ o
AL e T
P N Y 4
s Jappend ,,—j
ys

append xs ys = case xs of
[1 ->ys
a:d -> let o~ = append d ys in
a:o”

append xs ys = case xs of
[->ys
a:d -> a:(append d ys)

Recursion | Append? 21/28

[c7 3]
XS / l 7 lad) N 0 \
Y; N A/ /—-—‘\\
=2 { Joprend
y‘

appendo [] ys o = [(== o ys)]

appendo xs ys o = [(== xs a:d)
(== 0 a:o07)
(appendo d ys 07)]

Logic programming languages can be better “circuit discription languages’!

Circuit Simplification 22/28

A

—

%
S

Ax. [(Ax.x)(Ax.2 X) 2)]

X |—ON)

F'N

ANL.2 X x

x —OoN

A7 iy

A, ¢ - converting between circuits and lambdas
@ - circuit simplification

o - supercompilation / partial evaluation

Circuit Simplification | Inlining

def h(z): def g(y)

def £(x):

return z / 3 return h(1 + y) return g(

3 1 2
R
z y
def h(;): def g(k).‘: = def £(x):
return z / 3 return h(1l + y) return g(
3 1 2
R
z y
3 1 2
? Pl x
e - * <
4 y

def

def

def

f (%)
y =2 %X
return g(y)

f(x)
y =2 % X
z=1+y

return h(z)

f(x)
y =2 % X
z=1+y

return z / 3

Questions : Are they still “functional” programs? In what sense?

Circuit Simplification | Summary

Few observations here:

e variables and function arguments are the same thing in essence

e they are both “points”/ “anchors” of data flow (can always be exposed)
e in A-circuits they are both wires / conductors

e functional programs = point-free programs

For circuit simplification ~ partial evaluation:

e remove boxes (scope delimiters) = B-reduction

e adding boxes = m-expansion, Kleene's S;;, theorem

e swallowing boxes = inlining

e splitting boxes

e annihilation of constructors and eliminators / MUX and DEMUX
e collapsing of DEMUX

Type Inference 25/28

see old slides. ..

Proofs as Programs | Natural Deduction Without I'

(p—=Y)A(p—p)
® - ®

(e =) A(p—p)

=P

Y

P

PYAp

(= P)A(p—p)
] =P]

(p=P)A(p—p)

p—p

Y

p

YAp

=P Ap

[(p = P) A (¢ — p)]
[¢] o= [¢p]

[(p = P) A (¢ — p)]

p—=p

¥

YAp

p—oPAp

(p—=D)A(p—p) = @o—1YAp

>y
A

7
(2

T

e

Toward Type Classes. .. 27/28

TODO:
e to explore type classes like Applicative, Traversable, and Monad through A-circuits
e focus on Monad and Arrow

e for Monad, focus on continuation monad and its implications

Discussion 28/28

e can we imagine wires / conductors with some kind of resistance?

e how to extend A-circuits to first-order types and more (see lambda cube)?

	This work is mainly inspired by Yin Wang's scattered teaching, and based upon Programming Languages as Notations [] by Chelsea Sierra Voss \(csvoss\).
	Wires are abstract trajectories in some spaces.
	Boxes sliding along wires doesn't change circuits.
	There is no explicit and literal “λ” in λ-circuit - but wires and boxes preserves the “binding structures” and scopes.

