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There is a long history about diagrams. . .

Begriffsschrift (Frege, 1879) Graphical (Keenan, 1996)

Haskellian (1998 - modern+) SICP (1984)
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A program is seen as a machine. To make sense of it, one must observe its
operation.

�� Valentin Turchin, The Concept of a Supercompiler , 1986

Valentin Fyodorovich Turchin (1931-2010) was a Soviet and
American physicist, cybernetician, and computer scientist. He
developed the Refal programming language, the theory of meta-
system transitions and the notion of supercompilation.

This work is mainly inspired by Yin Wang's scattered teaching, and based
upon Programming Languages as Notations [?] by Chelsea Sierra Voss
(csvoss).
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Idealized Circuits Lambda Calculus

, x; y; z; : : :

wires / super-conductors variables

, �x:e; �xy:e; : : :

circuit templates abstractions

, re; r (e1
 e2); : : :

wire connections applications
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Idealized Circuits Lambda Calculus

�x:x

�xy:y

(�x:x)(�x:x)

�fx:fx

�fx:f(f(fx))
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� electrons moving through wires ) quite intuitive . . .

� circuits moving through �wires� ) nonsensical

Wires are abstract trajectories in some spaces.

� circuits moving through �wires� ) to move a circuit from A place to B place

� there might be many different ways from A to B

� ideally we ignore the difference (lengths, twists, etc.) and focus only on two �endpoints�

Boxes sliding along wires doesn't change circuits.
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*2

5

compose=�fg:�x:f � (g �x)
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Here is a diagram made from Yin Wang:

compose = \f g -> (\x -> f (g x))

� theoretically the above diagram should be the compose circuit

� for convenience, we can align two output arrows into one so that it �pokes around�
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� Boxes are �scope delimiters�

� Pins (wires crossing boxes) are perfect binders

There is no explicit and literal �l� in �-circuit - but wires and boxes
preserves the �binding structures� and scopes.

) same functions as deBruijn indices / numbers
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====================
�

a-equivalence : the name/tag of a wire always remains consistent. (silent)
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What about functions with free variables?

let x = 4 in
let f = \y -> x + y in

let x = 2 in
f 3
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What about functions with free variables?

let x = 4 in
let f = \y -> x + y in

let x = 2 in
f 3

Free variables are covert channels

Analogy - WiFi (wireless connections):

� connect to the unique WiFi named �home� once initiated ) unconvenient but safe

� connect to a closest WiFi named �home� wherever you go ) convenient but dangerous
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let x = 4 in
let f = \y -> x + y in

let x = 2 in
f 3

))))))))))))))))))))))))))))))))))))))) )static
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let x = 4 in
let f = \y -> x + y in

let x = 2 in
f 3

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) )dynamic
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Conditionals are demultiplexers (DEMUX)

This can be encoded in a type isomorphism (distribution law):

2� (A+B) ' (2�A)+ (2�B)
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Joins are multiplexers (MUX)

Joins are implicit in our daily programming experience. They are explicit in static analysis and
kind of explicit in logic programming. Consider the program below:

fact n = case n of
0 -> 1
n -> n * fact (n-1)

There are two possible outputs (one for each branch), but the number of output signal is 1.

(2�C)+ (2�D) ' 2� (C +D)
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sum n = case n of
0 -> 0
n -> n + sum (sub1 n)

sum 0 = 0
sum n = n + sum (sub1 n)
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Calling (sum 3) will dynamically unfold
(building) circuits through the rec endpoint.
It looks like a stack. All values are stored and
transmitted through wires.

(
=

Re-arrange the dynamically unfolded

circuits . . .
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append xs ys = case xs of
[] -> ys
a:d -> a:(append d ys)

append xs ys = case xs of
[] -> ys
a:d -> let o^ = append d ys in

a:o^
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appendo [] ys o = [(== o ys)]
appendo xs ys o = [(== xs a:d)

(== o a:o^)
(appendo d ys o^)]

Logic programming languages can be better �circuit discription languages�!
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!!!!!!!!!!�

        
&

�x: [(�x:x)((�x:2�x)x)]

 
¡' �  
¡�

!!!!!!!!!!�

        
&

�x:2�x

�; & - converting between circuits and lambdas

' - circuit simplification

� - supercompilation / partial evaluation
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)
def f(x):

y = 2 * x
return g(y)

)

def f(x):
y = 2 * x
z = 1 + y
return h(z)

)

def f(x):
y = 2 * x
z = 1 + y
return z / 3

Questions : Are they still �functional� programs? In what sense?
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Few observations here:

� variables and function arguments are the same thing in essence

� they are both �points�/ �anchors� of data flow (can always be exposed)

� in �-circuits they are both wires / conductors

� functional programs =/ point-free programs

For circuit simplification � partial evaluation:

� remove boxes (scope delimiters) ) b-reduction

� adding boxes ) h-expansion, Kleene's Sm
n theorem

� swallowing boxes ) inlining

� splitting boxes

� annihilation of constructors and eliminators / MUX and DEMUX

� collapsing of DEMUX

� . . .
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see old slides . . .
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TODO:

� to explore type classes like Applicative, Traversable, and Monad through �-circuits

� focus on Monad and Arrow

� for Monad, focus on continuation monad and its implications
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� can we imagine wires / conductors with some kind of resistance?

� how to extend �-circuits to first-order types and more (see lambda cube)?
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